Q1. (a)		noic acid can be made from propan-1-ol by oxidation using acidified potassium romate(VI). Propanal is formed as an intermediate during this oxidation.	
	(i)	State the colour of the chromium species after the potassium dichromate(VI) has reacted.	
			(1)
	(ii)	Describe the experimental conditions and the practical method used to ensure that the acid is obtained in a high yield. Draw a diagram of the assembled apparatus you would use. Conditions	
		Apparatus	
			(4)
	(iii)	Describe the different experimental conditions necessary to produce propanal in high yield rather than propanoic acid.	
			(2)
(b)		pan-1-ol is a volatile, flammable liquid. • one safety precaution that should be used during the reaction to minimise this	

	haza	ard.	(1
			•
(c)		sudent followed the progress of the oxidation of propan-1-ol to propanoic acid by acting the organic compounds from one sample of reaction mixture.	
	(i)	Give a chemical reagent which would enable the student to confirm the presence of propanal in the extracted compounds. State what you would observe when propanal reacts with this reagent.	
		Reagent	
		Observation	
			(2
	(ii)	Give a chemical reagent that would enable the student to confirm the presence of propanoic acid in the extracted compounds. State what you would observe when propanoic acid reacts with this reagent.	
		Reagent	
		Observation	
			(2
(d)		dict which one of the compounds, propan-1-ol, propanal and propanoic acid will e the highest boiling point. Explain your answer.	
	Pred	diction	
	Exp	anation	
		(Total 15 ma	(3) arks

Q2.Certain chemical tests were performed on the pain-relief drug ibuprofen. The results of these tests are given in the table below.

Test	Result
Aqueous sodium carbonate	Effervescence
Bromine water	Remained orange
Acidified potassium dichromate(VI) and heat	Remained orange
Fehling's solution and heat	Remained blue

Which one of the following functional groups do these results suggest that ibuprofen contains?

$$c = c$$

(Total 1 mark)

- **Q3.** Many naturally-occurring organic compounds can be converted into other useful products.
 - (a) Glucose, $C_6H_{12}O_6$, can be fermented to make ethanol, which can then be dehydrated to make the unsaturated compound, ethane.
 - (i) Write an equation for the fermentation of glucose to form ethanol.

.....

	(ii)	Identify a catalyst for the dehydration of ethanol to form ethene. Write an equation for this reaction.	
		Catalyst	
		Equation	(3
(b)	Ven	etable oils, which contain unsaturated compounds, are used to make	
(5)	marg	garine. Identify a catalyst and a reagent for converting a vegetable oil into garine.	
	Cata	lyst	
	Rea	gent	(2
			(2
(c)		c acid can be obtained from vegetable oils. Oleic acid is an example of an aturated compound.	
	CH₃(CH ₂) ₇ CH=CH(CH ₂) ₇ COOH	
	oleic	acid	
	(i)	Deduce the molecular formula and the empirical formula of oleic acid.	
		Molecular formula	
		Empirical formula	
	(ii)	State what is meant by the term <i>unsaturated</i> .	

Identify a reagent for a simple chemical test to show that oleic acid is unsaturated. State what you would observe when oleic acid reacts with this

(iii)

		re	agent.						
		Re	eagent						
		Ol	bservation with old	eic acid					
								(Total 10	(5) marks)
								(10141110	
Q4.	(a)	so	The addition on the use of the distribution of	sed to disting d sodium iod	juish be ide.	tween sepa		itrated aqueous us solutions of	
			The addition of AgNO₃(aq)	followed	nv	e addition o			
Observation NaBr(aq)	on with	า							
Observation Nal(aq)	on with	า							
								•	
	(ii)		ເplain why it is not dium nitrate and ເ						
		••••							(5)
(b)			queous sodium thand a colourless s			to solid silv	er bromide	a reaction	
	(i)	ld	entify the silver-co	ontaining spe	ecies pre	esent in the	colourless	solution.	

	(ii)	Write an equation for this reaction.				
	(iii)	Give one use of this reaction.				
			(3)			
(c)		ous silver nitrate can be used to distinguish between chloroethanoic acid and oyl chloride.				
	(i)	Draw the structure of ethanoyl chloride. Predict what, if anything, you would observe when ethanoyl chloride is added to aqueous silver nitrate.				
		Structure of ethanoyl chloride				
		Observation				
	(ii)	Draw the structure of chloroethanoic acid. Predict what, if anything, you would observe when chloroethanoic acid is added to aqueous silver nitrate.				
		Structure of chloroethanoic acid				

	Observation	
		(4)
(d) (i)	Tollens' reagent is formed by the addition of aqueous ammonia to aqueous silver nitrate. Identify the silver-containing complex present in Tollens' reagent and state its shape. Silver-containing complex	
(ii)	Draw the structure of methanoic acid. By reference to this structure, suggest why a silver mirror is formed when this acid reacts with Tollens' reagent. Structure Explanation	
(iii)	Deduce the identity of a carbon-containing species formed when methanoic acid reacts with Tollens' reagent. (Total 17 ma	(5) arks)

Q5.Consider the following scheme of reactions.

First propagation step	
Second propagation step	
A termination step to form a molecule with the empirical formula C_3H_7	
	(4)

(e) High resolution mass spectrometry of a sample of propane indicated that it was contaminated with traces of carbon dioxide.

Use the data in the table to show how precise $M_{\rm r}$ values can be used to prove that thesample contains both of these gases.

Atom	Precise relative atomic mass
¹² C	12.00000
¹ H	1.00794
¹⁶ O	15.99491

U	13.99491	
		(2)
	(Total	12 marks)